Fractional Tikhonov regularization for linear discrete ill- posed problems
نویسندگان
چکیده
Tikhonov regularization is one of the most popular methods for solving linear systems of equations or linear least-squares problems with a severely ill-conditioned matrix A. This method replaces the given problem by a penalized least-squares problem. The present paper discusses measuring the residual error (discrepancy) in Tikhonov regularization with a seminorm that uses a fractional power of the Moore-Penrose pseudoinverse of AAT as weighting matrix. Properties of this regularization method are discussed. Numerical examples illustrate that the proposed scheme for a suitable fractional power may give approximate solutions of higher quality than standard Tikhonov regularization.
منابع مشابه
Ill-Posed and Linear Inverse Problems
In this paper ill-posed linear inverse problems that arises in many applications is considered. The instability of special kind of these problems and it's relation to the kernel, is described. For finding a stable solution to these problems we need some kind of regularization that is presented. The results have been applied for a singular equation.
متن کاملFractional regularization matrices for linear discrete ill-posed problems
The numerical solution of linear discrete ill-posed problems typically requires regularization. Two of the most popular regularization methods are due to Tikhonov and Lavrentiev. These methods require the choice of a regularization matrix. Common choices include the identity matrix and finite difference approximations of a derivative operator. It is the purpose of the present paper to explore t...
متن کاملTikhonov regularization based on generalized Krylov subspace methods
We consider Tikhonov regularization of large linear discrete ill-posed problems with a regularization operator of general form and present an iterative scheme based on a generalized Krylov subspace method. This method simultaneously reduces both the matrix of the linear discrete ill-posed problem and the regularization operator. The reduced problem so obtained may be solved, e.g., with the aid ...
متن کاملTikhonov Regularization with a Solution Constraint
Many numerical methods for the solution of linear ill-posed problems apply Tikhonov regularization. This paper presents a modification of a numerical method proposed by Golub and von Matt for quadratically constrained least-squares problems and applies it to Tikhonov regularization of large-scale linear discrete ill-posed problems. The method is based on partial Lanczos bidiagonalization and Ga...
متن کاملThe active-set method for nonnegative regularization of linear ill-posed problems
In this work, we analyze the behavior of the active-set method for the nonnegative regularization of discrete ill-posed problems. In many applications, the solution of a linear ill-posed problem is known to be nonnegative. Standard Tikhonov regularization often provides an approximated solution with negative entries. We apply the activeset method to find a nonnegative approximate solution of th...
متن کامل